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Summary. Capture–recapture models were originally developed to account for encounter probabilities that
are less than 1 in free-ranging animal populations. Nowadays, these models can deal with the movement of
animals between different locations and are also used to study transitions between different states. However,
their use to estimate transitions between states does not account for uncertainty in state assignment. I
present the extension of multievent models, which does incorporate this uncertainty. Multievent models
belong to the family of hidden Markov models. I also show in this article that the memory model, in which
the next state or location is influenced by the previous state occupied, can be fully treated within the
framework of multievent models.
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1. Introduction
Biologists intending to study the dynamics of free-ranging ani-
mal populations often resort to following individuals rendered
identifiable by some marking technique (exceptional natural
marks can be used). Observations are carried out on several
field visits allowing the construction of an encounter history
for each recognizable individual. This method is known as
capture–recapture (CR). The data so gathered allow the esti-
mation of vital rates in the wild (see Schwarz and Seber, 1999
for a review of applications).

It is only recently that attention has turned toward esti-
mating movements among geographical locations (Hestbeck,
Nichols, and Malecki, 1991). In certain studies, the same in-
dividuals may be observed successively at different sites. The
corresponding models, stemming from the work of Arnason
(1972, 1973), are said to be “multisite.” They may also be
applied to the study of transitions among states. Used as mul-
tistate (sometimes multistrata) models, the original multisite
models serve, for instance, to estimate the probability that
a breeding animal in year t will breed again in year t + 1
(Nichols et al., 1994). However, a state is not as easy to ascer-
tain as a geographical position. An animal only observed while
feeding may or may not be breeding. Thus, the multistate
data present two kinds of uncertainty: uncertainty of detec-
tion and uncertainty of state. The multistate models currently
in use provide for uncertain detection but fail to recognize
uncertainty in the assessment of state. Up to now, attempts
at accounting for state uncertainty have been limited to sit-
uations where assignment probabilities are available either
from another source of information (Fujiwara and Caswell,
2002) or using the robust design (Kendall, Hines, and Nichols,

2003) (suggestions can also be found in Lebreton, 1995 and
Lebreton and Pradel, 2002).

The main aim of this article is to show how uncertainty
in the assessment of state can be incorporated into the anal-
ysis of “multistate” CR data. The solution I propose puts
an emphasis on the real nature of the data. Conceptually,
it is not states that are observed but rather something, say
an “event,” which reflects to some extent the underlying
state, which is the ultimate object of the study. The new
models are called “multievent” to reflect the nature of the
data. In the next section, I present the general multievent
model with time-dependent parameters. Then, Section 3 ex-
amines four situations of particular interest. It is first shown
that the multistate model of Arnason–Schwarz (AS) can be
retrieved as a particular case of the time-dependent mul-
tievent model. Then, I propose a model for the study of
breeding propensity when only the state breeder can be as-
certained. The Jolly–Move (hereafter JMV) model and the
memory model (Brownie et al., 1993) are two important gen-
eralizations of the AS model where some parameters (the
encounter probabilities and the transition probabilities, re-
spectively) depend on the state occupied at t − 1. I show
in the same section that they can be cast within the frame-
work of multievent models. The memory model has been pre-
viously treated with a partial likelihood approach (Brownie
et al., 1993). Section 4 compares the numerical estimates of
transition probabilities of Canada geese Branta canadensis
among wintering sites obtained with the full likelihood pro-
posed here to those obtained with partial likelihood. The last
section discusses the potential and limitations of multievent
models.
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2. The Time-Dependent Multievent Model
2.1 Data
The time-dependent multievent model assumes that the in-
dividuals in the population move independently over a finite
set of N states, E = {e1, . . . , eN}, through a finite number
of sampling occasions, T. For example, the states may be
e1 = “breeder,” e2 = “nonbreeder,” e3 = “dead.” Note that,
unlike the dominant practice in CR (but see Dupuis, 1995;
Lebreton, Alméras, and Pradel, 1999; Fujiwara and Caswell,
2002), the state “dead” (hereafter denoted †) is explicitly
included in E. For a given animal, the successive states oc-
cupied are not observed directly; rather, at each occasion
t, an event ot among L possible (set Ω = {v1, . . . , vL}) hap-
pens and is recorded leading to an observed encounter history
h = (o1, . . . , oT ). To keep with the example of breeding ani-
mals, we might have v1 = “sitting on an egg,” v2 = “standing
in the colony,” v3 = “feeding in a nearby field,” v4 = “not ob-
served.” Hence, a possible encounter history over three time
steps is (v3, v4, v1). This encounter history may be concisely
written as (301) with 0 standing for v4 = “not observed” in
accordance with the common practice in CR. The important
point here is to observe that the codes represent events, not
the states.

2.2 Assumptions
Events and states are best seen as random variables denoted
Ot and Qt , respectively. I assume that the event of occasion
t, Ot , depends only on the unobserved underlying state Qt of
the animal at the moment. I also assume that the successive
states obey a Markov chain.

2.3 Parameters
The parameters of the multievent model are

� φij ,t , the probability of being in state ej at time t + 1 if
in state ei at time t,

� πi,t , the probability of being in state ei when first en-
countered at time t,

� buj ,t , the probability of event vu for an animal in state ej

at time t,
� b0

uj ,t , the probability of event vu for an animal in state ej

at time t, which is then encountered, i.e., P (vu | ej and
“encountered”).

The b0’s are needed because the model conditions on the
time of first encounter of each animal. I will use the
following matrix and vector notations: Φt = (φij)t,πt =
(π1, . . . , πN )t, Bt = (buj)t, and B0

t = (b0
uj)t. Note that Φt is

row stochastic because of the systematic inclusion of the state
dead, while the columns of Bt and B0

t always sum to 1.

2.4 Likelihood
With these parameters, it is possible to write out the probabil-
ity of any encounter history. For instance, the capture history
(301) has probability

P (301) =
∑
i,j,k

πi,1b
0
3i,1φij,1b4j,2φjk,2b1k,3,

where i, j, and k span all possible states. It may be useful to
reflect on this example. A reasonable constraint here could be

that b12 = 0, i.e., a nonbreeder (the “2”) cannot be observed
sitting on an egg (the “1”). Then, b11 would be the probability
that a breeder is encountered sitting on an egg, and b0

11 would
be the probability that a breeder that is encountered is then
sitting on an egg. P(301) can be written in a more compact
form using matrix notations. More generally, taking D(θ) to
be the diagonal matrix with diagonal elements equal to the el-
ements of the arbitrary vector θ, the probability of the generic
encounter history h starting at time e can be written as

P (h) = πeD
(
B0

e(oe, ·)
)(

T∏
i=e+1

Φi−1D(Bi(oi, ·))
)

1N .

In this expression, B(o, ·) is the row vector of B corresponding
to event o, and 1N is the column vector of N ones. If there
are right-censored individuals (e.g., lost on capture), the T
in P(h) is to be replaced with the time of censoring. Finally,
the likelihood is the product of the probabilities of all the
encounter histories.

3. Some Particular Cases
3.1 The Arnason–Schwarz Model
The AS model is the model where, when an animal is ob-
served, its state is known without error. Thus, in the for-
malism of the multievent model, E = {e1, . . . , es, †} and Ω =
{v1, . . . , vs+1} where vi is the event “state ei is observed” ex-
cept for vs+1 which is “the animal is not encountered.” This
vindicates the practice of confounding the events v1 to vs with
the states e1 to es , respectively; it is only for event vs+1 that
there is uncertainty. If pi is the probability of encountering an
animal in state i,

Bt =




p1 0 . . . 0

0 p2 . . . 0

. . .

1 − p1 . . . 1 − ps 1




t

.

The initial event distribution matrix B0
t is obtained by re-

placing the p’s with 1 (the last column of B0
t is unused as

the corresponding state dead cannot be encountered). Finally,
πt = (π1, . . . , πs, 0)t with a final 0 because, again due to the
conditioning on the time of first encounter, the state dead is
impossible as an initial state. The likelihood of this multievent
model factorizes into two parts involving different parameters.
The first part involves only the πi ’s, and the second part is ex-
actly the likelihood of the AS model. As they have no param-
eters in common, each part can be maximized separately. The
maximum likelihood estimates (MLEs) for the πi ’s are simply
the proportions observed for the first time in each state at each
occasion. The MLEs for the other parameters are those of the
AS model.

3.2 A Simple Model for Studying Breeding Propensity
The study of transitions between the states breeder (B) and
nonbreeder (NB) is a topic of major interest to biologists. A
common situation is that where some animals are observed
in breeding activity, and can thus be assigned to the state
breeder with certainty, while the status of others remains
elusive and is recorded as unknown. There are three states
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in this model, E = {B ,NB , †} and three possible events, Ω =
{seen breeding (code 1), seen but status unknown (code 2),
not seen (code 0)}. The parameters of the model are, with
obvious notations,

Φt =


 φB,B φB,NB 1 − φB,B − φB,NB

φNB,B φNB,NB 1 − φNB,B − φNB,NB

0 0 1




t

,

Bt =


 p1|B 0 0

p2|B pNB 0

1 − p1|B − p2|B 1 − pNB 1




t

,

πt = (π1, π2, 0)t.

The probability of encounter of a breeder is p1|B + p2|B be-
cause a breeder can be encountered and recognized to be a
breeder (code 1, probability p1|B) or encountered with its
status remaining unknown (code 2, probability p2|B). The
model can be reparameterized to exhibit the probability β
that an encountered breeder is encountered in breeding ac-
tivity. Then, p1|B = pB × β and p2|B = pB × (1 − β). It
is then possible to write the initial-event distribution matrix
B 0

t as

B0
t =


 β 0 0

1 − β 1 0

0 0 1




t

.

This formulation also makes it possible to constrain breed-
ers and nonbreeders to share the same probabilities of en-
counter (pNB = pB ). This model can easily be refined to ac-
count for more or less reliable clues about breeding activity.
For instance, a bird seen bringing food back to a colony is a
strong, although maybe not conclusive, indication that it is
feeding young. Presence at a breeding colony is another indi-
cation of that animal breeding. However, the two clues may
not carry the same level of evidence and are perhaps better
treated as two separate events for which the conditional prob-
abilities of occurrence given the underlying state may differ
substantially.

3.3 The Memory Model
This is the generalization of the AS model where transition
probabilities from t to t + 1 depend on the state at time t − 1.
In the absence of knowledge of the state occupied at t − 1,
there is uncertainty as to which transition should apply and

the multistate framework is thus not appropriate. Brownie
et al. (1993) have proposed a partial likelihood procedure
based on the capture histories with at least two successive
known states. The complete treatment considers that the rel-
evant states are the pairs of successive “states.” To avoid con-
fusion, let us suppose that we are dealing with geographical
locations called sites. It is thus the pairs of successive sites,
which are relevant. With two sites, C and D, the state set
E is formed of seven states: {CC, CD, DC, DD, C†, D†, ††},
the current location coming second. The location currently
observed constitutes the event: Ω = {seen in C (code 1), seen
in D (code 2), not seen (code 0)}. With pC (respectively pD)
the probability of encounter of an animal currently at site C
(respectively D), and φuvw the probability of transition from
v to w for an animal previously at site u, the parameters of
the model are

Φt =




φCCC φCCD 0 0 1 − φCCC − φCCD 0 0

0 0 φCDC φCDD 0 1 − φCDC − φCDD 0

φDCC φDCD 0 0 1 − φDCC − φDCD 0 0

0 0 φDDC φDDD 0 1 − φDDC − φDDD 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1




t

,

Bt =




pC 0 pC 0 0 0 0

0 pD 0 pD 0 0 0

1 − pC 1 − pD 1 − pC 1 − pD 1 1 1




t

,

B0
t =




1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 0 0 1 1 1




t

,

πt = (πCC , πCD, πDC , 1 − πCC − πCD − πDC , 0, 0, 0)t.

3.4 The JMV Model
The JMV model is another generalization of the AS model.
This time, it is the encounter probability which is allowed to
depend on the site occupied at t − 1. The solution is similar
to that for the memory model in terms of states to consider.
Again, assuming for clarity that we are dealing with two geo-
graphical sites, the states in the multievent formalization are
E = {CC ,CD ,DC ,DD ,C †, D†, ††}, and the event set is Ω =
{seen in C (code 1), seen in D (code 2), not seen (code 0)}.
The parameters of the model are

Φt =


φCC φCD 0 0 1 − φCC − φCD 0 0

0 0 φDC φDD 0 1 − φDC − φDD 0

φCC φCD 0 0 1 − φCC − φCD 0 0

0 0 φDC φDD 0 1 − φDC − φDD 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1




t

,
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Bt =




pCC 0 pDC 0 0 0 0

0 pCD 0 pDD 0 0 0

1 − pCC 1 − pCD 1 − pDC 1 − pDD 1 1 1




t

,

B0
t =




1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 0 0 1 1 1




t

,

πt = (πCC , πCD, πDC , 1 − πCC − πCD − πDC , 0, 0, 0)t.

It is possible to combine the memory and the JMV model.

4. A Numerical Example
Owing to its importance, I illustrate the general method with
an application of the memory model to the study of transi-
tions between wintering sites of Canada geese (see Hestbeck
et al., 1991 for details of the study). The data are the
same as those used in the partial likelihood approach of
Brownie et al. (1993). For the sake of comparison, I have
calculated, under the full likelihood of Section 3.3, the
MLEs of the interannual transitions between the mid-Atlantic
(M) and the Chesapeake (C) regions from bandings or
resightings taking place in the years 1984–1989 (Brownie
et al., 1993, Table 8). The likelihood has been directly op-
timized using a quasi-Newton algorithm. The parameters
were maintained within range by a combination of the con-
tinuation ratio method (see, for instance, McCullagh and
Nelder, 1983, p. 103–104) and logit transformations. The pro-
gram is written in MATLAB (Hanselman and Littlefield, 2000).
The program and a document describing the program in
detail are available at ftp://ftp.cefe.cnrs.fr/biom/Soft-
CR/Memnon/. The memory model for the Canada goose data
converges in approximately 1 minute on a PC with a 1.5-GHz
processor.

In Table 1, it can be seen that there is generally good agree-
ment between the two analyses, with occasional discrepancies.

Table 1
Estimates of annual transition probabilities under the memory model for Canada geese wintering in the

mid-Atlantic (M) and Chesapeake (C) regions (estimated standard errors in parentheses). Previous estimates
obtained with a partial likelihood by Brownie et al. (1993) are given between brackets [ ] for comparison.

Estimated transition probability if

Annual interval Transition made in Location at t + 1 = Location at t + 1 �=
t to t + 1 t to t + 1 location at t − 1 location at t − 1

1985–1986 MM 0.59 (0.05) [0.57 (0.05)] 0.44 (0.06) [0.38 (0.07)]
MC 0.24 (0.07) [0.22 (0.07)] 0.05 (0.03) [0.04 (0.02)]
CM 0.30 (0.07) [0.34 (0.09)] 0.06 (0.01) [0.05 (0.01)]
CC 0.63 (0.03) [0.66 (0.04)] 0.35 (0.07) [0.21 (0.09)]

1986–1987 MM 0.58 (0.03) [0.58 (0.04)] 0.29 (0.04) [0.31 (0.05)]
MC 0.28 (0.03) [0.37 (0.06)] 0.07 (0.02) [0.06 (0.02)]
CM 0.12 (0.04) [0.13 (0.04)] 0.05 (0.01) [0.03 (0.01)]
CC 0.67 (0.03) [0.67 (0.03)] 0.51 (0.05) [0.42 (0.06)]

1987–1988 MM 0.54 (0.04) [0.54 (0.04)] 0.27 (0.05) [0.27 (0.05)]
MC 0.28 (0.03) [0.31 (0.06)] 0.15 (0.02) [0.14 (0.02)]
CM 0.22 (0.04) [0.22 (0.04)] 0.05 (0.01) [0.03 (0.01)]
CC 0.59 (0.02) [0.59 (0.03)] 0.59 (0.05) [0.51 (0.06)]

Although the precision is enhanced with the full likelihood,
the increase is not great.

The encounter probabilities are relatively well estimated
while the initial state probabilities appear imprecise (Table 2).
The parameters relative to the first year (initial-state proba-
bilities) and last year (encounter and initial-state probabili-
ties) or to the first and last intervals (transition probabilities)
are not estimable without additional assumptions. In partic-
ular, only the product of a last transition probability by the
encounter probability at the site of arrival (φuvw )T−1 × (pw )T
is estimable. For the initial-state probabilities of each occa-
sion, the situation is more complex. The sum of the estimates
of the probabilities of the states sharing the same current site
is always equal to the proportion among the newly encoun-
tered individuals that start from this particular site at this
particular occasion. For instance, π.C = πCC + πMC at occa-
sion 2 is estimated as the proportion among the individuals
newly encountered at occasion 2 that are encountered at site
C (Chesapeake). This suggests the following reparameteriza-
tion of πt: (π.CαCC, π.C(1 − αCC), (1 − π.C) αCM, (1 − π.C) ×
(1 − αCM), 0, 0, 0)t. With this new parameterization, it can
be shown that the likelihood factorizes into a term involving
only the π.C’s and a term involving only the other parame-
ters. The first term is the product of the π.C’s and 1−π.C’s
occasion by occasion with each time the number of individ-
uals starting from C or M, respectively, as exponents. It is
optimized by the proportions indicated above. The αCC’s and
αCM’s are not estimable at the first and last occasions.

5. Discussion
As well as providing a solution to the problem of uncertain
states, the multievent approach presented here shows that the
CR models belong to the family of hidden Markov models
(HMMs) (see, for instance, MacDonald and Zucchini, 1997).
More precisely, the time-dependent multievent model is a non-
homogeneous nonstationary HMM. The link so established
opens the way to the importation of new techniques into the
field of CR. For instance, the parameters (Φt, B

0
t , Bt,πt) could
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Table 2
Estimates of encounter and initial-state probabilities under the
memory model for Canada geese wintering in the mid-Atlantic
(M) and Chesapeake (C) regions (estimated standard errors in

parentheses)

Encounter probabilities

Site 1985 1986 1987 1988

M 0.67 (0.05) 0.48 (0.03) 0.52 (0.02) 0.52 (0.03)
C 0.43 (0.02) 0.35 (0.01) 0.37 (0.01) 0.39 (0.01)

Initial-state probabilities

State 1985 1986 1987 1988

MM 0.06 (0.11) 0.09 (0.05) 0.01 (0.07) 0.06 (0.04)
MC 0.06 (0.04) 0.14 (0.10) 0.10 (0.04) 0.13 (0.06)
CM 0.29 (0.12) 0.32 (0.06) 0.36 (0.08) 0.21 (0.04)
CC 0.59 (0.05) 0.45 (0.09) 0.53 (0.05) 0.60 (0.03)

be estimated using the Baum–Welch algorithm (Baum and
Petrie, 1966), which is essentially an EM algorithm. However,
the direct optimization of the likelihood seems preferable to
Baum–Welch when it is easy to implement and works well
as here (MacDonald and Zucchini, 1997, Chapter 2.7). Po-
tentially more interesting is the determination of the most
likely state trajectory with the Viterbi algorithm (Rabiner
and Juang, 1993). A possible application is the estimation of
the cumulative reproductive success of an animal with a par-
ticular capture history when the model for studying breeding
propensity (Section 3.2) is being applied. In an HMM, it is
also possible to calculate the probabilities of the final states.
This may serve to determine the probability that an animal
is alive by the end of the study, or the probability that an
animal is a female when sex is derived from imperfect clues.
In relation to the determination of sex, it may be worth not-
ing that the use of continuous measures, such as biometrical
measures, can perfectly be accommodated within the multi-
event framework. The only modification consists in replac-
ing the conditional event probabilities buj ’s with conditional
densities.

Another remark is that the classical multistate CR analy-
ses ignore a piece of information uncovered by the treatment
of the AS model as a particular case of the time-dependent
multievent model (Section 3.1), namely, that leading to the es-
timation of initial-state probabilities. These probabilities may
prove useful. For instance, under the assumption of similar en-
counter probabilities of newly marked and previously marked
animals, the initial-state probabilities can be rewritten so as
to yield the proportions in each state in the unmarked compo-
nent of the population. In turn, this may be interesting as an
estimate of, say, the proportion of the population occupying
each site in a multisite study, or the sex ratio when sex is to
be estimated.

Another aspect is the flexibility of these models. Groups,
age, and covariables can be introduced in a straightforward
manner. For instance, an age structure is already naturally
present due to the conditioning on the initial encounter. The
two event distribution matrices of Sections 2 and 3, Bt and

B0
t , which coexist at the same date, do correspond to two dif-

ferent age classes. This can easily be generalized. The state
(E) and event (Ω) sets themselves may vary by group, age,
or time. The best example is probably provided by seasonal
studies. For a population monitored during the breeding and
the wintering seasons, the states taken into consideration may
be “breeder” and “nonbreeder” during the breeding season
but the particular wintering site occupied during the winter-
ing season. As for the event sets, they will probably differ,
being related to breeding activities during one season and to
wintering activities during the other. An example of an age-
dependent state set is in fact available in the time-dependent
multievent model itself. Again due to the conditioning on the
time of first encounter, the nonobservable states (including
the state “dead”) are ruled out as initial states. For all prac-
tical purposes, the initial state set, E0, is thus a reduced state
set. As a last illustration of the potential of the multievent
framework, let us consider a way of dealing with the very
common phenomenon of capture heterogeneity. Often cap-
ture heterogeneity can be treated by the consideration of a
fixed limited number of catchability classes (see, for instance,
Pledger, Pollock, and Norris, 2003). This approach can be cast
within the multievent framework by treating the catchability
classes as hidden frozen states with distinct probabilities of
encounter. A byproduct of this formulation is that the initial-
state probabilities, corrected for encounter probabilities and
the proportion of marked animals in the population, produce
an estimate of the proportion of each class in the population.

The multievent models are thus easy to design and to fit.
However, they have potentially many parameters and identi-
fiability is an issue. For instance, in Section 4, the parameters
of the memory model at the first and last time steps were not
estimable. It is unclear whether the number of events should
be limited in relation to the number of states. Formal tools
have been developed for the study of redundancy in multi-
nomial models (Catchpole and Morgan, 1997). Their appli-
cation to multistate models relied on the product multino-
mial structure embodied in the m-array summarization of the
data (Gimenez, Choquet, and Lebreton, 2003). This summa-
rization does not carry over to the multievent models. Thus,
only the multinomial distribution of animals over the differ-
ent encounter histories remains available for an application of
the general method. In practice, this may prove prohibitively
difficult due to the high number of potential encounter histo-
ries. It may thus be that we are, at least temporarily, back to
the study of individual models one at a time. The question of
the assessment of fit, which has received a specific treatment
only recently for multistate models (Pradel, Wintrebert, and
Gimenez, 2003), is another open issue.
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